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We adapt belief-propagation techniques to study the equilibrium behavior of a bipartite spin glass, with
interactions between two sets of N and P ¼ αN spins each having an arbitrary degree, i.e., number of
interaction partners in the opposite set. An equivalent view is then of a system of N neurons storing P
diluted patterns via Hebbian learning, in the high storage regime. Our method allows analysis of parallel
pattern processing on a broad class of graphs, including those with pattern asymmetry and heterogeneous
dilution; previous replica approaches assumed homogeneity. We show that in a large part of the parameter
space of noise, dilution, and storage load, delimited by a critical surface, the network behaves as an
extensive parallel processor, retrieving all P patterns in parallel without falling into spurious states due to
pattern cross talk, as would be typical of the structural glassiness built into the network. Parallel extensive
retrieval is more robust for homogeneous degree distributions, and is not disrupted by asymmetric pattern
distributions. For scale-free pattern degree distributions, Hebbian learning induces modularity in the neural
network; thus, our Letter gives the first theoretical description for extensive information processing on
modular and scale-free networks.
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Since their introduction in the pioneering paper by
Amit et al. [1,2], associative neural networks (NN) have
played a central role in the statistical mechanics com-
munity, soon becoming one of the most successful
offshoots of spin glasses (SG) [3], as proven by the
celebrated paper by Hopfield [4] or the excellent book by
Amit [5]. Indeed, the Hopfield model for NN [4] can be
regarded as a SG where the coupling between each pair
of spins σi, σj, i; j ¼ 1;…; N has the Hebbian form Jij ¼
N−1P

μξ
μ
i ξ

μ
j and the ξμ, μ ∈ f1;…; P ¼ αNg, represent

stored patterns with entries ξμi ¼ �1 distributed as
Pðξμi ¼ �1Þ ¼ 1=2.
A further connection between NN and SG has been

pointed out recently in the context of bipartite SG [6]. Here,
we illustrate the connection for a system of two sets of
spins, σi, i ¼ 1;…; N and τμ, μ ¼ 1;…; P, connected by
links ξμi ¼ �1 that are sparse, so that Pðξμi ¼�1Þ¼c=2N
and Pðξμi ¼0Þ¼1−c=N with c ¼ OðN0Þ, and described
by the SG Hamiltonian HSGðσ;τjξÞ∝−

P
i;μξ

μ
i σiτμ.

Marginalizing over τ in the partition function Z¼P
σ;τe

−βHSGðσ;τjξÞ ¼P
σe

−βHNNðσjξÞ shows that the σ re-
present a NN with Hamiltonian HNNðσjξÞ¼−β−1

P
μ ln ×

½2coshðβPiξ
μ
i σiÞ� or, up to an additive constant,

HNNðσjξÞ ¼ −ðβ=2ÞPμ;i;jðξμi ξμj Þσiσj þ…. Higher-order
interactions are not written explicitly here; these are fully
absent if the τi are continuous rather than discrete and have
a Gaussian prior. Remarkably, while standard NN retrieve
patterns sequentially (one at time), associative networks

with diluted patterns are able to accomplish parallel
retrieval in appropriate dilution regimes [7–9]. However,
existing studies, which use replica analysis, apply only to
homogeneously diluted networks where the degrees in
each set of spins have a Poisson distribution. Here we adapt
cavity (i.e. belief-propagation) methods to analyze the
significantly more general scenario where pattern asym-
metry is permitted and degrees in the two sets of spins have
arbitrary distributions, thus covering information process-
ing even on scale-free networks [10,11]. Remarkably,
Hebbian interactions generated by patterns with such
scale-free degree distribution give rise to networks of
neurons which are both scale free and contain effective
modules, namely highly clustered quasiautonomous com-
munities (see Fig. 1). Their existence, in turn, is crucial
at the information-processing level, because it is the basis
of extensive parallel retrieval of multiple patterns accom-
plished by the network. This is in agreement with exper-
imental findings on intracellular protein networks, which
have scale-free degrees, but where interactions among
hubs are strongly suppressed in favor of a modular
structure, which minimizes cross talk among different
modules [12,13].
To confirm this scenario, we consider an equilibrated

system of N binary neurons σi ¼ �1 at temperature (fast
noise) T ¼ 1=β, with Hamiltonian

HðσjξÞ ¼ −
1

2

X
i;j

XP
μ

ξμi ξ
μ
jσiσj;
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where pattern entries fξμi g are sparse (i.e., the number of
nonzero entries of any pattern is finite). We can then use a
factor graph representation of the Boltzmann weight asQ

μFμ, with factors

Fμ ¼ eðβ=2Þ
P

i;j∈OðμÞξ
μ
i ξ

μ
jσiσj ¼

�
ez
P

i∈OðμÞξ
μ
i σi

�
z
; ð1Þ

where OðμÞ ¼ fi∶ξμi ≠ 0g and z is a zero mean Gaussian
variable with variance β [19]. We denote by eμ ¼ jOðμÞj
the degree of a pattern μ and by di ¼ jNðiÞj the degree of a
neuron i, with NðiÞ ¼ fμ∶ξμi ≠ 0g. We consider random
graph ensembles with given degree distributions PðdÞ and
PðeÞ, and nonzero ξ’s independently and identically
distributed (IID). Conservation of links demands Nhdi ¼
Phei where averages are taken over PðdÞ and PðeÞ. The
message from factor μ to node j is the cavity distribution
PμðσjÞ of σj when this is coupled to factor μ only, which we
can parameterize by an effective field ψμ→j. The message
from node j to factor μ is the cavity distribution PnμðσjÞ of
σj when coupled to all factors except μ, which we can
parameterize by the field ϕj→μ. The cavity equations are
then [20]

PμðσjÞ ¼ TrfσkgFμðσj; fσkgÞ
Y

k∈OðμÞnj
PnμðσkÞ; ð2Þ

PnνðσjÞ ¼
Y

μ∈NðjÞnν
PμðσjÞ: ð3Þ

Given the site factorization, conditional on z, of the factors
(1), translating these equations into ones for the effective
fields is straightforward,

ψμ→j ¼ tanh−1hσjiμ

¼ tanh−1
hsinhðzξμj Þ

Q
k∈OðμÞnj coshðϕk→μ þ zξμkÞiz

hcoshðzξμj Þ
Q

k∈OðμÞnj coshðϕk→μ þ zξμkÞiz
;

ð4Þ

ϕj→ν ¼
X

μ∈NðjÞnν
ψμ→j: ð5Þ

These equations, once iterated to convergence, are exact
on tree graphs. They will also become exact on graphs
sampled from our ensemble in the thermodynamic limit,
because the sparsity of the ξμi makes the graphs locally
treelike, with typical loop lengths that diverge logarithmi-
cally [14] with N [18,21].
For large N, we can describe the solution of the cavity

equations in terms of the distribution of messages or fields,
Wψ ðψÞ and WϕðϕÞ. Denoting by Ψðfϕk→μg; fξμkg; ξμj Þ the
rhs of Eq. (4), convergence of the cavity iterations then
implies the self-consistency equation (see, e.g., [22])

Wψ ðψÞ ¼
X
e

½ePðeÞ=hei�

× hδ(ψ −Ψðϕ1;…;ϕe−1; ξ1;…; ξeÞ)i;
where the average is over IID values of the (nonzero)
ξ1;…; ξd and over IID ϕ1;…;ϕe−1 drawn fromWϕðϕÞ, and
similarly

WϕðϕÞ ¼
X
d

½dPðdÞ=hdi�
�
δ

�
ϕ −

Xd−1
μ¼1

ψμ

��
;

where the average is over IID ψ1;…;ψd−1 drawn from
Wψ ðψÞ. Field distributions can then be obtained numeri-
cally by population dynamics (PD) [20]. For symmetric ξ
distributions, a delta function at the origin for bothWψ ,Wϕ

is always a solution, and we find this to be stable at low β.
At high β, on the other hand, the ψ can become large (see
Fig. 2), hence also the ϕ, and the spins σi will typically be

FIG. 1 (color online). (Left) Example of a Hebbian scale-free
network of N ¼ 500 neurons and P ¼ αN patterns with α ¼ 3.
Pattern degrees are distributed as PðeÞ ∝ e−γ for e ≥ 1, with
γ ¼ 2.2. (Right) The network structure is modular as shown by
the generalized topological overlap matrix [9,10], with (top)
modules arranged in a hierarchical fashion. See [14] for further
information on network generation.
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FIG. 2. HistogramsWψ ðψÞ of the field ψ for α ¼ 8, c ¼ 2, and
β−1 ¼ 1; 2, as shown in the figure.
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strongly polarized. The fields βξμi
P

j∈OðμÞniξ
μ
jσj then fluc-

tuate little, and the ψ as suitable averages of these fields
cluster near multiples of β (for ξ ¼ �1).
Our main interest is in the retrieval properties, encoded

in the fluctuating pattern overlaps mμ ¼
P

i∈OðμÞξ
μ
i σi.

Since the joint distribution of the σi in OðμÞ is
FμðfσigÞ

Q
i∈OðμÞPnμðσiÞ, the distribution of the pattern

overlap mμ is

�
Trfσig

�
δðmμ −mÞ exp

� X
i∈OðμÞ

ðξμi zþ ϕi→μÞσi
��

z

��

�
Trfσig

�
exp

� X
i∈OðμÞ

ðξμi zþ ϕi→μÞσi
��

z

�
: ð6Þ

Defining this as Pðm; fϕi→μg; fξμi gÞ, in the graph ensemble
we have

PðmÞ ¼
X
e

PðeÞhPðm;ϕ1;…;ϕe; ξ1;…; ξeÞi: ð7Þ

The average here can be read as PðmjeÞ, the overlap
distribution for patterns with fixed degree e. Whenever
WϕðϕÞ ¼ δðϕÞ, PðmjeÞ is the overlap distribution for an
“effectively isolated” subsystem of size e: the neurons
storing each pattern ξμ can retrieve this independently
of other patterns, even though the number of patterns is
extensive. Retrieval within each group of neurons is
strongest at low temperatures [see Fig. 3 (left)] as expected
on general grounds. Once nonzero ϕ appear neuron groups
are no longer independent and cross talk interference
between patterns emerges.
Bifurcation.—When the “parallel processor” solution

with zero cavity fields ϕ becomes unstable, a bifurcation
to a different stable solution occurs. Depending on the
external parameters, this can be seen in the first or second
moment of the field distribution. Expanding for small fields
we get

Ψðfϕk→μg; fξμkg; ξμj Þ ≈
X

k∈OðμÞnj
ϕk→μΞðξμk; ξμj ; fξμl gÞ;

with coefficients Ξðξμk; ξμj ; fξμl gÞ given by

�
sinhðzξμj Þ sinhðzξμkÞ

Y
l∈OðμÞnfj;kg

coshðzξμl Þ
�

z

�

� Y
l∈OðμÞ

coshðzξμl Þ
�

z
:

The self-consistency relations for the field distributionsWψ

andWϕ then show that as long as the mean fields are small,
they are related to leading order by

hψi ¼ hϕi
X
e

PðeÞ½eðe − 1Þ=hei�hΞðξ1;…; ξeÞi; ð8Þ

hϕi ¼ Bdhψi; ð9Þ

where Bd ¼
P

dPðdÞdðd − 1Þ=hdi is one of the two
branching ratios of our locally treelike graphs, the other
being Be ¼

P
ePðeÞeðe − 1Þ=hei. If the means are zero

then the onset of nonzero fields is detected by the variances,
which are related to leading order by

hψ2i ¼ hϕ2i
X
e

PðeÞ½eðe − 1Þ=hei�hΞ2ðξ1;…; ξeÞi; ð10Þ

hϕ2i ¼ Bdhψ2i: ð11Þ

Symmetric pattern distributions.—When the ξ are sym-
metrically distributed, then the field distributions are also
always symmetric and there can be no instability from
growing means, cf. Eq. (8). The bifurcation has to result
from the growth of the variances, which from Eq. (11)
occurs at A ¼ 1 with

A ¼ Bd

X
e

PðeÞ½eðe − 1Þ=hei�hΞ2ðξ1;…; ξeÞi: ð12Þ

This factorizes as A ¼ BdAeðβÞ with the dependence on the
noise and on the topology (i.e., the distribution of the e’s)
contained in the second factor AeðβÞ. For β → 0 the
variance of z goes to zero and Aeð0Þ ¼ 0. For β → ∞,
the z averages are dominated by large values of z where
sinh2ðzÞ ≈ cosh2ðzÞ, so Aeð∞Þ ¼ Be. Hence there is no
bifurcation when BdBe < 1, in agreement with the general
percolation condition for bipartite trees [23].
The key advantage of our method is that we can easily

investigate the parallel processing capabilities of a
bipartite graph with arbitrary degrees feμg. Here we have
a pattern-dependent dilution of the links PðξÞ ∝Q

i;μPðξμi Þ
Q

μδeμ;
P

i
∣ξμi ∣ with

Pðξμi Þ ¼
eμ
2N

ðδξμi ;1 þ δξμi ;−1Þ þ
�
1 −

eμ
N

�
δξμi ;0 ð13Þ

leading to PðdÞ¼PoissonðαheiÞ while PðeÞ¼P−1P
μδe;eμ .

If we keep the mean degree fixed at hei ¼ c, the critical
point for β → ∞ is found at
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FIG. 3 (color online). Pðmje ¼ 6Þ above (left) and crossing
(middle and right) the critical line for different values of β and α,
respectively. Full red (dashed blue and dotted green) curves in the
middle and right panels refer to temperatures above (below) the
critical line.
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BdBe ¼ αcðhe2i=c − 1Þ ¼ α½cðc − 1Þ þ VarðeÞ� ¼ 1

while for large α one obtains for the critical line β−1c ðαÞ ≈ffiffiffi
α

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðc − 1Þ þ VarðeÞp

. Similar results are obtained with
soft constraints eμ on the degrees, i.e., by dropping the delta
function constraint in PðξÞ before Eq. (13): one now finds
BdBe ¼ α½c2 þ VarðeÞ� and β−1c ðαÞ ≈ ffiffiffi

α
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ VarðeÞ
p

.
In both cases, the region where parallel retrieval is obtained
is larger for degree distributions with smaller variance; the
optimal situation occurs when all patterns have exactly the
same number c of nonzero entries [Fig. 4 (right)]. Notably,
then, scale-free networks, which perform best for informa-
tion spreading [23], are not optimal for information
processing [14]. For the special case of homogeneous
dilution Pðξμi ¼ �1Þ ¼ c=ð2NÞ we easily recover previous
results [8]: the distributions of pattern degrees e and neuron
degrees d are PoissonðcÞ and PoissonðαcÞ, respectively, so
Bd ¼ αc, Be ¼ c so that there is no bifurcation for αc2 < 1.
The network acts as a parallel processor here for any β
because the bipartite network consists of finite clusters of
interacting spins in which there is no interference between
different patterns [8]. At higher connectivity, the critical
line defined above by A ¼ 1 indicates the temperature
above which this lack of interference persists even though
the network now has a giant connected component.
Figure 4 (left) compares theory to PD results, where we
locate the transition as the onset of nonzero second
moments of the field distributions. The impact of the
transition on the overlap probability distribution of a
pattern with fixed e can be seen from the PD results in
Fig. 3 (middle and right panels). Crossing the transition
line, parallel retrieval is accomplished at low temperatures,
but it degrades when α is increased (see shrinking peaks in
the middle panel), or c is increased, eventually fading away
for sufficiently large α and c (right panel).
We can also analyze the case of asymmetric patterns,

where we take for the nonzero pattern entries Pðξμi ¼ �1Þ ¼
ð1� aÞ=2 with a degree of asymmetry a ∈ ½−1;þ1�. One

can show [14] that at zero temperature the bifurcation occurs
when BdBe ¼ a−2; when a tends to zero the transition point
goes to infinity and we retrieve the symmetric case. Beyond
the bifurcation, noncentered field probability distributions
(see Fig. 5) produce a nonzero global magnetization typical
of ferromagnetic systems. However, a bifurcation towards
growing field variances at zero means can also still occur.
The physical bifurcation is the one taking place first on
increasing β; Fig. 6 shows that at large α this is the one to
growing means, at small α to growing variances.
To our knowledge, ours is the first study to quantify

analytically the impact of heterogeneous degree distribu-
tions on the resilience of (parallel) processes on graphs.
Degree heterogeneities in monopartite graphs [24] are well
known to affect their resilience [25,26] and the dynamics of
processes that they support (transport, epidemics, etc.)
[27,28], due to the fact that hubs enhance the spread of
information across the network. Our method paves the way
for exploring similar qualitatively important phenomena in
bipartite systems.
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FIG. 6 (color online). Transition lines to growing field means
(theory, green) and variances (theory, red), showing a good match
to numerical PD data (dots); here c ¼ 1 and pattern bias a ¼
1; 0.95; 0.9 from left to right. The first line to be crossed from
high T ¼ β−1 gives the physical transition.
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FIG. 4 (color online). Transition lines (theory, with symbols
from PD numerics) for different pattern degree distributions. Left:
e ∼ Poissonðc ¼ 1Þ. Right: Changing PðeÞ at constant hei ¼ 3:
PðeÞ ¼ δe;3 (blue); PðeÞ ¼ ðδe;2 þ δe;3 þ δe;4Þ=3 (green);
PðeÞ ¼ ðδe;2 þ δe;4Þ=2 (pink); PðeÞ power law as in preferential
attachment graphs, with he2i ¼ 21.66 (orange).
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FIG. 5. Histogram of the fields ψ in the ferromagnetic region,
for c ¼ 1, β ¼ 1, and different levels of bias: a ¼ 0.9 with α ¼ 9
(left) and a ¼ 1 with α ¼ 8 (right). Field distributions are
obtained by PD starting from positive fields, to break the gauge
symmetry. For a ¼ 1 (right) there are only positive fields, as
expected: when all patterns have positive entries there are no
conflicting signals, even above the percolation threshold.
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